Fe-coated biochar for P removal and recovery of slow release fertilizers

MINKYUNG KIM

University of Rome "La Sapienza", CNR (National Research Council) Italy

Coauthor: Giuseppina Falasca, Barbara Casentini, Stefano Fazi

kminkyung3844@gmail.com

https://www.linkedin.com/in/minkyung-kim-b1bb43267

https://www.lausambiente.it

Excess phosphorus causes eutrophication

- External inputs of P: runoff from fertilized fields or point sources
- Eutrophication \rightarrow algae and microorganisms \uparrow : affects ecological state of water bodies
- Phosphate concentration in European rivers has halved in the last decade: thanks to protective Directives (e.g., WFD, UWWTD, MSFD, ...)
- In most EU countries more than 40% of aquatic ecosystems are at risk
- Global warming \rightarrow intensified eutrophication by promoting the growth of algae

WFD: Water Framework Directive; UWWTD: Urban Wastewater Directive; MSFD: Marine Strategy Framework Directive

P as critical raw material

- Phosphorite (phosphate rock): 81%, P: 100% dependent on third countries for its supply
- Their end-of-life recycling rate is very low (Phosphorite: 17%, P: 0%)
- Annual extraction of P is approximately 53 million tons P_2O_5 (80% is used as fertilizer)
- Phosphorite: depleted within 50-100 years

Aims of the study

- Optimization of synthesis process of different Fe-coated biochars (with different FeOOH and gels)
- Study of phosphate adsorption processes (kinetic & thermodynamic) to evaluate the removal efficiency and stability of the selected materials
- Study the microbial colonization on optimized materials in laboratory & field (wastewater)
- Evaluation of the possible reuse of the Fe-P-rich spent material as an amendment

MATERIALS AND METHODS

Preparation of 8 materials

BioC: Biochar; Materials of Iron: Am: Amorphous, Aka: Akaganeite, GFH: Granular Ferrous Hydroxide; F: fine (0.42-2mm), M: medium (>2mm); 1, 3: g FeOOH/L

Phosphate adsorption and analytical methods

Isotherms and adsorption kinetics

- 0.25 g of 8 materials in 100 mL of PO₄ solution (L₁=1, L₂=5, L₃=10, L₄=20 mg/L)
- 3 mL samples were taken (t_0 =0, t_1 =1, t_2 =24), C_0 = 5 mg/L PO₄

Adsorption in consecutive cycles in synthetic waters and real matrices

500 mg of 8 materials in 250 mL of MilliQ or treated wastewater $(C_0=5 \text{ mg/L PO}_4)$ stirred for 24h X 3 consecutive cycles

Concentration of PO₄ and total Fe

UV-VIS Spectrophotometry

Microbial biomass development

Submerged in the wastewater treatment plant

2 g of selected materials submerged for 14 days

Incubation in laboratory conditions

1.5 g of biochar (BioC F, Am-BioC F, and P-loaded Am-BioC F) : incubated for one month in 1 L aerated reactors filled with wastewater

Bacterial abundance: epifluorescence microscopy

PO₄ release in soil by P-loaded biochar

To evaluate the release and retention capacity of PO_4 by materials in the soil (1 g + 14 g of soil, 6.7%)

Each pot was watered with 20 mL of distilled water every two days X 5 cycles

After 1 h, 5 mL of samples were taken and filtered

Plant preparation and morpho-anatomical analyses

Plant material and incubation conditions

Seeds of *Arabidopsis thaliana* (L.) Heynh were sown on petri plates (Murashige and Skoog) with 0.5% sucrose and 0.8% agar Incubated under long day conditions (16/8h light/dark) at 22 ± 2°C and 70% relative humidity

A. thaliana (L.) seedlings: transplanted 3 weeks after sowing 10 seedlings were used per treatment and watered with 200 mL of distilled water every 4-5 days for 8 cycles

Morpho-anatomical analyzes:

- height of the plants
- diameter of the main stem (of 5 plants and cut at 5 cm of height)
- number of siliques, length of the silique (20 siliques per treatment)

Seedlings of A. thaliana

RESULTS

8 optimized materials

Code	Recipe	Fe %
BioC F	Biochar (0.4 -2 mm)	0.0 %
Am-BioC F	Biochar (0.4 -2 mm) + 1M FeCl ₃ + 1M NaOH	3.8 %
BioC Alg M	Biochar (>2 mm) + 2% Alginate	0.0 %
Aka-BioC Alg M 1	Biochar (>2 mm) + 2% Alginate + FeOOH 1 g/L	0.1 %
GFH-BioC Alg M 1	Biochar (>2 mm) + 2% Alginate + GFH 1 g/L	0.1 %
GFH-BioC Alg M 3	Biochar (>2 mm) + 2% Alginate + GFH 3 g/L	1.1 %
BioC Aga M	Biochar (>2 mm) + 0.2% Agar	0.0 %
GFH-BioC Aga M 3	Biochar (>2 mm) + 0.2% Agar + GFH 3 g/L	0.3 %

Adsorption isotherms

Am-BioC F

maximum phosphate adsorption capacity (q_{max}) : 7.1 mg/g according to the Langmuir model

Other materials

: 3.7-5.3 mg/g

Adsorption at 3 cycles of batch experiment

Am-BioC F

80% removal rate after the 3rd cycle

Other materials: 20%

PO₄ saturated surface area disturbed the following adsorption

The removal rate has drastically \searrow for all materials \rightarrow presence of complexing agents and biomass

Should be carefully considered in the use of modified biochar for long-term exposure

Microbial biomass on materials

BioC F - Images (spatial distribution) by confocal laser scanning microscopy (CLSM)

Aka-BioC Alg M1

- Materials coated with Fe and alginate : the highest growth of microbial biomass

- Fe or alginate may have created a suitable nutrient source for bacteria

P-loaded Am-BioC F

stimulated by the coexistence of phosphate and Fe used as nutrients in biofilm growth

PO₄ release in soil by P-loaded biochar

Total average of leached PO₄ concentration of 5 cycles: BioC F - the lowest (12.2 ± 0.6 mg/L) **Control** - the highest (14.5 ± 0.5 mg/L)

Nutrient loss prevention was not visible under the examined condition in <u>nutrient-rich soils</u>

Growth of Arabidopsis thaliana

15 days after the transplant: Maturing silique

Delayed flowering was observed in plants treated with Fe-coated biochar 4-5 days after Control

 \rightarrow prolonged their vegetative stage to ensure the fruiting cycle

Length of silique and diameter of stem

Plants grown on soil enriched with Fe-coated biochar (with and without P)

→ a statistically significant difference (P-loaded Am-BioC F: p<0.01, Am-BioC F: p<0.05) compared to Control

CONCLUSION

Optimization of materials

- Am-BioC F: removal efficiency of 99%, q_{max} equal to 7.1 mg/g
- During consecutive cycles : a drastic ↘ in P adsorption efficiency (in real matrices)

Microbial biomass on materials

- (wastewater treatment system) Aka-BioC Alg M1: highest microbial biomass growth
- P-loaded Am-BioC F: highest abundance of bacteria compared to the control

Growth of Arabidopsis thaliana with materials

 Plants grown on soil treated with Fe-coated biochar (with, without P): statistically significant difference (with P: p<0.01, without P: p<0.05) compared to Control (lengths & numbers of siliques, stem diameter)

Fe-coated Biochar

Optimization of materials to enhance the phosphate adsorption capacity \rightarrow real "traps" for the phosphorus present in water

Collaboration network

Sapienza University – Water Research Institute (IRSA-CNR)

Collaboration with municipalities, local authorities and protected areas managers \rightarrow will provide a good network to facilitate its application

Laboratory & real water exposure

The study was carried from both lab experiments and field

Interdisciplinary approach Chemistry, botany, microbiology, environmental science

Tandem-style research

Optimization of a material that adsorbs P present in water | Its reuse as an amendment

Circular economy

Green materials like biochar, once enriched with phosphate in eutrophicated environment, can then find direct use as fertilizers

Let's continue the conversation!

Post questions and comments in the IAIA24 app.

MINKYUNG KIM

University of Rome "La Sapienza", CNR (National Research Council) Italy

Coauthor: Giuseppina Falasca, Barbara Casentini, Stefano Fazi

kminkyung3844@gmail.com

https://www.linkedin.com/in/minkyung-kim-b1bb43267

https://www.lausambiente.it

#iaia24